7.2 Применение законов Ньютона: задачи по динамике с ответами

(Все задачи по динамике и ответы к ним находятся в zip-архиве (186 кб), который можно скачать и открыть на своем компьютере. Попробуйте решить все задачи самостоятельно и только потом сравнивать свои ответы с нашими. Желаем успехов!)

7.25.   Для равномерного поднятия груза массой m = 100 кг вверх по наклонной плоскости с углом α = 30° необходимо приложить силу F = 600 Н, направленную вдоль плоскости. С каким ускорением будет скатываться груз, если его отпустить?   [ a = 4 м/с2 ]

7.26.   Из одной точки на длинной наклонной плоскости одновременно пускают два тела с одинаковыми скоростями: первое — вверх вдоль плоскости, второе — вниз. Найти отношение расстояний, пройденных телами к моменту остановки первого тела. Трения нет.   [ L2/L1 = 3 ]

7.27.   Брусок толкнули со скоростью 10 м/с вверх вдоль доски, наклоненной под углом 30° к горизонту. Обратно он вернулся со скоростью 5 м/с. С какой скоростью вернется брусок, если его толкнуть с той же скоростью вдоль той же доски, наклоненной под углом 45° к горизонту?   [ v = 6,97 м/с ]

7.28.   На вершине равнобедренного клина с углом при основании α= 45° находится невесомый блок, через который перекинута нить. К нити привязаны два бруска с массами m1 и m2. Если бруску m1 сообщить некоторую скорость, направленную вниз, то система остановится через время t1, если с той же скоростью толкнуть вниз брусок m2, то система остановится через время t2. Определить отношение масс m1/m2, если известно, что t1/t2 = 2, а коэффициент трения между брусками и клином равен μ = 0,5.   [ m1/m2 ≅ 0.714. Смотрите формулу в общем файле]

7.29.   Наклонная плоскость разделена по длине на две равные части. Если тело отпустить без начальной скорости с самого верха, то оно доедет до низа с нулевой скоростью. Каков коэффициент трения между телом и плоскостью на нижней половине плоскости, если на верхней половине он равен μ1? Угол наклона плоскости равен α.   [Смотрите ответ в общем файле]

7.30.   На наклонной плоскости лежит шайба. Причем коэффициент трения между шайбой и наклонной плоскостью μ > tg α, где α — угол наклона плоскости. К шайбе прикладывают горизонтальную силу. При этом шайба начинает двигаться в горизонтальном направлении с постоянной скоростью v1. Найти установившуюся скорость v2 скатывания шайбы с плоскости.   [Смотрите ответ в общем файле]

рисунок к задаче 7.317.31.   На гладкой наклонной плоскости (рисунок слева) с углом наклона α лежат два бруска с массами m1 и m2, связанные нитью, перекинутой через неподвижный блок. Коэффициент трения между брусками равен μ. При каком отношении масс бруски будут неподвижны?   [Смотрите ответ в общем файле]

7.32.   На наклонной плоскости лежит шайба. Угол наклона плоскости α, коэффициент трения μ, масса шайбы m. Известно, что μ > tg α. Какую горизонтальную силу F, направленную вдоль плоскости, параллельно нижнему ребру, надо приложить к шайбе, чтобы сдвинуть ее с места?   [Смотрите ответ в общем файле]

7.33.   Клин массой M лежит на горизонтальной плоскости. По его боковой грани, наклоненной под углом α к горизонту, скользит без трения брусок массой m. При каком коэффициенте трения между клином и плоскостью клин будет стоять на месте?   [Смотрите ответ в общем файле. Примечание: уточнение к ответу задачи 7.33 смотрите на этой странице в первом комментарии ]

7.34.   Тело массой m = 1 кг лежит у основания наклонной плоскости с углом наклона α = 30°. На тело начинает действовать постоянная сила F, направленная вверх вдоль плоскости. Спустя время to сила прекращает действовать, а спустя еще 3to тело возвращается обратно к основанию плоскости. Определить величину силы F, если трения нет.   [ F ≅ 11.4 Н. Смотрите формулу в общем файле]

7.35.   На гладкой горизонтальной поверхности лежит гладкий клин массой M с углом наклона α. На клин кладут брусок массой m. С какой горизонтальной силой нужно действовать на брусок, чтобы он не скользил по клину?   [Смотрите ответ в общем файле]

рисунок к задаче 7.367.36.   Определить ускорение клина в системе, изображенной на рисунке слева. Трения нет, нить и блок идеальны. Верхний участок нити горизонтален.   [Смотрите ответ в общем файле]

рисунок к задаче 7.377.37.   Определить ускорения тел в приведенной системе (рисунок слева). Массы тел одинаковы, коэффициент трения тоже одинаков и равен μ. Нить и блок идеальны.   [Смотрите ответ в общем файле]

рисунок к задаче 7.387.38.   Клин с углом наклона α и массой M лежит на горизонтальной поверхности (рисунок слева). На него кладут брусок массой m, к которому привязана нить, перекинутая через блок. С какой горизонтальной силой надо тянуть за нить, чтобы брусок по клину не скользил? Трения нет.   [Смотрите ответ в общем файле]

7.39.   На гладкой горизонтальной поверхности лежит клин массой M с углом при основании α. По клину без трения соскальзывает брусок массой m. Определить ускорение клина.   [Смотрите ответ в общем файле]

7.40.   Наклонная плоскость длиной l = 1 м наклонена под углом α = 30° к горизонту. Сверху без начальной скорости отпускают небольшое тело. Одновременно снизу вверх вдоль плоскости толкают такое же тело. С какой скоростью необходимо толкнуть нижнее тело, чтобы верхнее после абсолютно упругого столкновения с нижним доехало до своей исходной точки. Трения нет. Одинаковые тела при встречном абсолютно упругом ударе обмениваются скоростями.   [Смотрите ответ в общем файле]

7.41.   Два тела, связанные нитью, движутся вниз с ускорением вдвое большим ускорения свободного падения. Во сколько раз сила натяжения нити, за которую тянут тела больше силы натяжения нити, связывающей тела? Масса нижнего тела в три раза больше массы верхнего.   [Смотрите ответ в общем файле]

рисунок к задаче 7.427.42.   При какой максимальной силе F верхний брусок еще не будет скользить по нижнему (рисунок слева)? Массы брусков m1 и m2, коэффициент трения между брусками μ, поверхность стола гладкая.   [Смотрите ответ в общем файле]

рисунок к задаче .7.43.   Какую силу необходимо приложить к нижнему бруску (рисунок слева), чтобы выдернуть его из-под верхнего? Коэффициенты трения для верхнего и нижнего брусков — μ1 и μ2, а их массы m1 и m2.   [Смотрите ответ в общем файле]

7.44.   Горизонтальная поверхность совершает горизонтальные колебания. При этом в течение времени t поверхность движется с постоянной скоростью и в одном направлении, затем в течение того же времени и с той же скоростью в противоположном направлении и т. д. На поверхность кладут кусочек мела. Коэффициент трения мела о поверхность равен μ. Какой длины след оставит мел на поверхности?   [Смотрите ответ в общем файле]

7.45.   Тонкое резиновое кольцо жесткостью k и массой m, лежащее на горизонтальной поверхности, начинают медленно раскручивать вокруг его оси. При какой угловой скорости длина кольца увеличится вдвое? При какой угловой скорости кольцо обязательно разорвется? Считать, что закон Гука выполняется вплоть до момента разрыва кольца.   [Смотрите ответ в общем файле]

7.46.   Если к пружине поочередно подвешивать грузы с массами m1 и m2, то ее длина оказывается равна соответственно l1 и l2. Определить жесткость пружины и ее собственную длину.   [Смотрите ответ в общем файле]

рисунок к задаче 7.477.47.   Два шара с массами M и m соединены нитью и подвешены к пружине как показано на рисунке слева. Если перерезать нить в случае а), то шар M придет в движение с ускорением a1. Каково будет ускорение шара m, если перерезать нить в случае б)?   [Смотрите ответ в общем файле]

рисунок к задаче 7.487.48.   Два тела с массами m1 и m2 соединены пружиной жесткости k (рисунок слева). На тело m2 начинает действовать постоянная сила F в направлении тела m1. Найти деформацию пружины при установившемся движении. Каким будет ускорение тел сразу после прекращения действия силы? Трения нет.   [Смотрите ответ в общем файле]

рисунок к задаче 7.497.49.   На горизонтальном столе лежат два одинаковых груза массой m, скрепленных пружиной жесткости k (рисунок слева). К грузам на нити, перекинутой через неподвижный блок, подвешен третий такой же груз. Найти удлинение пружины при установившемся движении системы. Трения нет.   [Смотрите ответ в общем файле]

Далее: следующие 21 задача по применению законов Ньютона (динамика).   |   Вернуться к списку разделов ДИНАМИКИ.

Комментарии

Ошибка в ответе к задаче 7.33. В файле указана формула:

μ ≥ mg (tg α) / [M (1 + tg2 α) + m].

В числителе множитель g является лишним. Должно быть:

μ ≥ m (tg α) / [M (1 + tg2 α) + m].

В ложности первой формулы легко убедиться, проверяя размерность величины. Исходя из формулы, коэффициент μ должен иметь размерность м/с2 (размерность ускорения). На самом же деле коэффициент трения должен быть безразмерной величиной:

μ = Fтр.макс / N.